
Improving the System Software Requirements
Development Process

Phillip J. Brown, Alexander E. Iwach, Donald R. Williams
Loral Vought Systems Corporation

P.O. Box 650003, M/S EM-90
Dallas, TX 75265-0003

Copyright © 1994 by Loral Vought Systems Corporation

Abstract. One of the most significant challenges
currently facing the system engineering profession is
devising procedures for improving the system software
requirements development process. While many
practitioners promote a variety of automated tools and
mechanistic templates as the means to improved
productivity, experience suggests the highest leverage
lies in harnessing the cognitive processes required to
produce a stable set of well defined system software
requirements. System complexity and schedule
constraints necessitate the use of teams of specialists
working together to produce the desired software
requirements database. System engineering's primary
responsibilities are to foster team acceptance of a
shared vision through the identification of intermediate
and final products supporting the software
requirements development process. This paper
describes a framework for accomplishing the above,
illustrates key points with actual examples, and
identifies three approaches for improving management
understanding of the requirements and software
development processes.

INTRODUCTION

 The continuing explosive growth in processor
throughput capability and available memory per dollar
of expenditure is turning our view of system
engineering on its head (Babbitt 1993 and Rechtin
1993). In the past, and to a lesser extent today,
systems were engineered based on the level of
performance that could be wrung out of hardware
configurations. Software was developed around the
chosen hardware baseline and made to fit. However,
exponential growth in computer hardware capability
invites new demands for improved software
performance, better reliability and previously
undreamed of applications. With these new demands
come increasing software complexity and an ever
larger proportion of system development resources
being allocated to system software development.

Examples of industry software development problems
abound; the General Accounting Office (Bridickas
1992) observed that “Defense's mission-critical systems
continue to have significant software development
problems.” The bulk of these problems are attributed
to inadequate management, defective requirements
definition and flawed testing approaches.
 We believe many of the problems cited by the
General Accounting Office can be avoided by more
attention to the development of system software from
specialists within a multi-disciplined team construct.
Lacking such a construct, the software engineering
community, bereft of a real system engineering
commitment, has forged ahead developing CASE tools
and procedures designed to ease their software
development burden. The resulting outpouring of
formal processes, metrics and automated tools has
tended to mask the need for improving the efficiency of
intellectual activities.
 The importance of marshaling human thought in
developing software is only now beginning to be
studied. Recent research at Penn State (Hogg 1993)
indicates time allocated to thought or intellectual
(non-routine) software development tasks outweighs
time allocated to clerical (routine) tasks by a margin of
four to one. According to Hogg, intellectual tasks
include such chores as constructing models, generating
usable code, and analyzing data flow. Among the
clerical tasks are redrawing diagrams, identifying rule
violations, and maintaining a record of design changes.
 Add the diversity of viewpoints introduced by
individual problem solving techniques to a multi-
person software development project, and one has the
ingredients for a significant expenditure of resources.
Conversely, focusing everyone's efforts through a
common process, thus gaining high leverage from a
productivity improvement standpoint, has been shown
to reduce the total amount of time expended on thought
(Cusumano 1991). This is achieved by effectively
sharing, combining and aligning the specialized
information each member of a system development

team brings to solving software development problems.
 Yourdan asserts that attention to “peopleware” can
produce 10-fold productivity improvements (Yourdan
1993). Our belief, based on our experience, is
consonant with Yourdan's assertions.
 The use of a team approach for solving system
problems is not a new idea (Churchman, Ackoff, and
Arnoff, 1957). In fact, the use of multi-disciplined
technical teams was successfully implemented by the
military to solve strategic and tactical problems in
World War II. What is new is widespread formation
of teams by corporations combined with the growing
recognition that the use of teams in the United States
has not lived up to its promise. Two recent books by
MIT's Sloan School of Management faculty contend
the root cause of our inability to fully realize the
benefits of teams is the emphasis in society on
individualistic capitalism (Thurow, 1993) which
produces traditional authoritarian “controlling
organizations” (Senge, 1990). As Thurow notes, “if
the system is based solely upon individual effort, there
is no need to pay attention to group motivation,
voluntary cooperation, or teamwork.”
 The solution, according to Senge, is an
organizational commitment to collective learning. The
elements of such a commitment are encouraging
personal learning, surfacing and challenging mental
models, building shared visions, fostering team
learning and, most importantly, promulgating systems
thinking across the breadth of the organization/project.
 In terms of improving the systems software
development process, this translates to an early and
continuing inter-disciplinary team effort focused on
aligning and developing the capacity to produce the
required software products.
 Fundamental to building the system/software
requirements development team is an agreed-upon
definition of the responsibilities of the system and
software organizations. One such definition was
presented at last year's National Council on Systems
Engineering symposium (Brown and Cady 1993).
Moreover, a common framework for focusing all
affected disciplines on the system must be provided.
Other affected disciplines typically include mechanical
designers, electronics engineers, test personnel, and
representatives from the quality organization. A
frequently used medium for the team's common
reference frame is a specification tree.
 In devising a process for the system/software team to
follow in developing system software requirements for
appropriate tree branches, a critical test the process
must pass is that it works for both hardware and
software requirement definition. Too often one sees
processes developed from either a strictly software or

strictly hardware perspective. Equitable allocation of
requirements between hardware and software elements
mandates use of an unbiased requirements
development process.

SYSTEM SOFTWARE REQUIREMENTS
 DEVELOPMENT PROCESS

 Development of system software requirements traces
from original system specifications and follows the
flow-down of requirements to subordinate elements.
An example of a system decomposition which follows

the work breakdown structure (WBS) and
corresponding specification tree is shown in Figure 1.
For the sake of illustration, the complexity of the
system requires only four levels of decomposition to
arrive at a point that designers may begin the process
of developing components. The process described
here works for any level in the hierarchy.
 The objective of the requirements development
process is to amplify top-level requirements and
develop an underlying design of methods and
algorithms for implementation in software. For
example, a weapon system which includes missile
guidance components will have guidance laws

Figure 1. System Specification Tree
Promotes Team Communication

implemented in software. Guidance and/or control
system engineers develop specific methods and
algorithms by building models using FORTRAN and
other computer-based tools. Specific software design
issues are considered during this phase of the
development and impacts are assessed by the
requirements development team, which includes a
software engineering representative. In the past,
software requirements definition started at the lowest
level of system definition and decomposition and, in
many cases, resulting source code was turned over to
software engineers to implement the algorithms in
embedded software.
 As the complexity of systems increased and new
processes for software development were implemented,
 it became clear that software requirements needed to
be surfaced much earlier in the system development
process. Furthermore, systems have become more
oriented toward software implementations and less
oriented toward hardware implementations. The
system engineering needed to partition requirements
between hardware and software elements is evolving
from a view of hardware definition followed by
software development and integration to a perspective
of system-level models which identify software-related
requirements early in the system development process.
 A top view of the process to develop system software
requirements for each level of system decomposition is
presented in Figure 2. Three steps to develop system
software requirements for a level of system
decomposition are shown. The basic process includes
static requirements analysis, functional analysis, and
dynamic analysis. Intermediate products of the basic
process include system behavior diagrams which
capture system sequences and component interaction,
interface characterization, and timelines. The final
products are system requirements allocations,
preliminary software requirements, and preliminary
interface requirements. In the case of weapon systems,
the system requirements allocations are documented in
a System/Segment Design Document, and preliminary
software requirements are used in the development of
preliminary software requirements specifications and
preliminary interface requirements specifications in
accordance with DOD-STD-2167A as described in
Figure 2.

Static Analysis. The first step in static analysis
consists of a review of source requirements, statement
of work, and documentation of preliminary
development activities by system and software
engineers working together to identify computer-
related requirements. Computer-related requirements

are requirements for functions which control the
system, provide outputs to users, or monitor sensors or
other input devices. In the case of weapon systems,
key requirements that must be developed for
implementation by system computers are target
engagement activities, system sequences and displays,
and operator inputs. Documentation of design
activities and trade studies are essential for defining
requirements for subsystems and components in
complex systems. Guidance and control systems which
require extensive development work must be
generalized as a part of the system requirements
development process. Legacy systems and preliminary
point designs are included as inputs to the development
team. An example of this step is portrayed in Case
Study 1.
 The second step in static analysis is for the team to
resolve ambiguities, establish common vocabulary,
amplify and clarify requirements, and identify issues.
The result of this step is an update to the list of terms

Figure 2. Product Focused System
Software Requirements Development
Process

and common vocabulary, and action items to be
resolved between the system engineering team and the
customer. For example, a requirement that merely
states that general purpose processors shall have
floating point instructions implemented as part of their
instruction set architecture does not prohibit the use of
fixed point arithmetic. This requirement may be met
by processors that have floating point instructions
implemented in their architecture, but are not executed
directly. Generally, amplifying and clarifying a
requirement means that the objective or intent of a
requirement must be understood by all affected
disciplines in order to meet the requirement. An
example of establishing a common vocabulary is
depicted in Case Study 2.
 The third step for the development team is to verify
achievability by comparing requirements with baseline
concepts. Requirements allocated to subordinate
elements must be achievable. The experience and
perspective brought to the team by individuals from
different specialty areas contributes significantly to the
determination of achieveability. These concepts are
demonstrated in Case Study 3.

Functional Analysis. Functional analysis activities
drive to improving the baseline concept definition.
The system/software requirements development team
folds computer-related requirements into existing
functional flow block diagrams and then updates and
expands behavior diagrams as described in Case
Study 4. State transition diagrams are used when
available. The requirements development team then
assesses current design concepts to determine if they
are adequate to meet system requirements.
 If alternate concepts are needed, then a concurrent
engineering product design team consisting of domain
specialists develops alternative design concepts to meet
system or subsystem requirements. The product design
team defines trade studies, selection criteria, and
analyses to evaluate the concepts. The product design
team then performs the trade studies and analyses, and
 evaluates the candidate concepts to determine if any of
the concepts meet the selection criteria. If none of the
concepts meets the criteria, then the process for
developing alternate concepts is repeated until at least
one concept is acceptable. After an acceptable concept
is selected by the product design team, the
requirements development team repeats the process of
updating the functional flow and behavior diagrams to
make them consistent with baseline design concepts.
 Following selection of an acceptable concept, the
functional flow and behavior diagrams are passed to
the next step in the process.

Dynamic Analysis. The purpose of dynamic analysis
is to develop rationale and correctly allocate
requirements to hardware and software components.
The system/software requirements development team
defines and performs trade studies and analyses,
identifies and resolves interfaces, and develops derived
requirements for subordinate components based on
system timelines and component characteristics. A
representative example of dynamic analysis is
presented in Case Study 5.
 System simulation plays an important role in
computer-related trade studies and analyses because it
provides a way to identify and correct defects in
requirements while the costs for correction are lowest.
Requirements that are missing, inaccurate, incomplete,
infeasible, or conflicting are identified during system
level simulation (Roetzheim 1991).
 The first step in performing dynamic analysis is for
the requirements development team to allocate current
level requirements to subordinate elements and expand
system simulation models. If the requirements are

allocated to more than one subordinate element, then
the second step in performing dynamic analysis is for
the requirements development team to define
computer-related trade studies and analyses to define
subsystem characteristics and identify interfaces. The
third step, illustrated in Figure 3, is for the
requirements development team to perform trade
studies and analyses. In particular, evaluation of
system timelines and performance characteristics
provides the rationale for definition of derived
requirements and interfaces.
 After performing trade studies and analyses, the

Figure 3. Computer-Related Trade
Studies and Analyses Critical to
Understanding Complex Systems

requirements development team documents the
allocated and derived subordinate component
requirements, interface requirements, system behavior,
and timelines for the current level of system
decomposition. If additional levels of decomposition
are needed, then the requirements development process
is repeated, beginning with static analysis as shown in
Figure 2.

CASE STUDIES

The authors have experience on several programs in
which system software requirements development
problems were resolved successfully by small teams of
specialists. Each multi-discipline team was comprised
of a cadre of members from system engineering,
software engineering, and quality assurance. The
membership of each team was tailored to ensure proper
 discipline coverage by including representatives from
affected disciplines (e.g., electronics systems,
mechanical systems, specialty engineering, test
operations). These system/software requirements
development teams demonstrated that specific process
improvements could be realized in solving software
development problems by effectively integrating the
insights and contributions of each specialist on the
team. These process improvements are detailed in the
following case studies.

Case Study 1: Static Analysis – Defining
Requirements Based on Upgrading an Existing
Design. One of the many difficult challenges facing
requirements development teams involves the
definition of requirements to modify and upgrade
existing systems. Sometimes the familiarity with an
existing system provides a team a great deal of
information of the single point design while potentially
obscuring the definition of the requirements.
 This situation was illustrated on a program wherein
an existing external interface unit was to be integrated
into the weapon system. Since the original interface
unit was built as a piece of test equipment for a concept
validation program, no formal requirements were
written. However, to upgrade the weapon system, the
interface unit requirements were now required in order
to allocate functions properly within the new system
architecture.
 A team of system, software and electronics engineers
was formed to solve this problem. The team convened
a meeting with approximately a dozen engineers from
the predecessor program to determine the interface
unit's requirements. These specialists were very
familiar with the interface unit implementation and

were able to elaborate on what functions the unit
performed and how the unit performed these functions.
 However, the specialists were not always sure why
certain features had been incorporated into the design
of the unit. Lacking the underlying rationale for these
features, it was not clear whether these features should
be retained in the upgraded unit. The absence of
interface requirements necessitated the team to perform
a bottom-up analysis of the design to derive these
requirements for the unit. Equipped with these
requirements, the team was able to productively
develop the software for the upgraded configuration.
 This case study demonstrates the downstream value
of developing and maintaining accurate requirements
documentation and traceability for a system so that
system improvements can be made quickly and
efficiently.

Case Study 2: Static Analysis – Establishing a
Common Vocabulary and Set of Terminology.
A continuing challenge faced by requirement analysis
teams is a lack of a common frame of reference. One
team of specialists was able to solve this problem by
analyzing and discussing the source requirements for a
missile prior to developing the missile software
requirements. The team first identified a set of system
level requirements which pertained to the system
behavior of the missile. This task consisted of listing
the requirements which were applicable to the missile
software, eliminating the requirements that only
applied to the missile hardware, and analyzing the
requirements which applied to both missile hardware
and software. The team then organized these
requirements in a logical manner by developing a table
of contents for the missile requirements document.
 By following these steps, it became evident that
agreement on concepts and terminology was essential.
For instance, the definition of “missile algorithm
requirements” was not interpreted in the same manner
by each team member; some considered an algorithm
a set of mathematical equations while others regarded
it as program language code. Since the purpose of
defining these algorithm requirements was to facilitate
missile software design, coding and testing in Ada, the
team recognized the importance of establishing
agreement on the terminology “missile software
algorithms” prior to defining requirements. To decide
this issue, the team conducted a lively debate
examining the advantages and disadvantages of each
point of view. Some team members argued that a
substantial amount of risk was reduced by developing
and testing the missile algorithms using an
engineering computer system programming language
(e.g., FORTRAN) and subsequently providing this

software code to software engineers for conversion into
a programming language suitable for embedded real-
time systems (e.g., Ada, Pascal, JOVIAL, assembly
language). This approach, which has been successfully
implemented on other weapon system programs, was
held in high regard by these team members.

Other team members asserted that, although this
approach has been implemented successfully on other
programs, it has several serious shortcomings. First,
these team members felt this approach was inconsistent
with the fundamental purpose for requirements,
namely, to define the problem statement without
specifying the method of implementation. In contrast,
a source code listing is the implementation of a point
solution and, therefore, not a set of requirements.
Secondly, if the requirements have been defined as
lines of code, then each interim step which is computed
by the algorithm is regarded with the same importance
as the algorithm result. These team members
contended that the level of detailed testing of the
interim steps could add hundreds of hours of labor to
the cost of the program which can be avoided if the
basic underlying requirements for the missile
algorithms were identified whenever possible. Finally,
these team members noted that any changes to the
missile algorithms would necessitate changing the
source code. Since the source code was viewed as the
missile algorithm requirements, a change to the source
code would precipitate a formal change to the contract.
 These team members proposed that “missile algorithm
requirements” define the performance of the
algorithms in terms of the internal missile states and
the missile environment.
 After much discussion, the team agreed to define the
terminology “missile software requirements” as the
description of missile algorithm performance and to
defer the development of the corresponding program
language code during the design phase. As a result of
this exchange of ideas during the early phase of the
program, the team members were able to evaluate the
consequences of these alternatives from the outset, and
select a solution which both considered the affected
disciplines and the elements of the product life cycle.

Case Study 3: Static Analysis – Correcting System
Software Requirement Deficiencies in System
Specifications. System requirements analysis has been
 typically conducted from a predominantly hardware
perspective. While this perspective may be entirely
appropriate for certain hardware oriented
implementations, it limits early visibility of software-
related requirements in systems which are comprised
of both hardware and software elements. Developing

insight into these software related requirements during
the system analysis phase can reveal requirements
which are ambiguous or which are in error. This early
evaluation of system software requirements allows
engineers to clarify requirements and to negotiate
correction of requirement deficiencies with the
customer prior to the start of subsequent subsystem
level requirements analysis.
 In one instance, software engineering team members
participated in an evaluation of a system specification.
 Their contribution resulted in a lengthy and
productive dialogue with the customer which amplified
software related requirements issues concerning
program loading, reprogrammable memory, resistance
to inadvertent operation, abnormal processing, safety,
and fault recovery. In retrospect, it was agreed that
determining the achievability of the requirements at
the system level provided the necessary insight to
develop consistent and clear lower level software
requirements.

Case Study 4: Functional Analysis - Driving to a
Baseline Concept Definition. One requirements
development team experienced difficulty in defining
the system software requirements at the interface
between the fire control system and the missile. This
team solved this problem by developing scenarios
which described the behavior of fire control system and
 missile interactions. Domain experts were consulted
to identify concurrent or near simultaneous tasks
within these scenarios and to characterize their
durations. These task sequences were organized into
timelines and evaluated for completeness and closure
of data involving parallel tasks and analyzed for
staleness of information to assure the stability of the
data. As a result of these analyses, the team was able
to specify the system software requirements for this
interface in terms of the internal states and
environment of the fire control system and the missile.

Case Study 5: Dynamic Analysis – Allocating and
Deriving Hardware and Software Requirements. A
small team of system, software and mechanical
engineers demonstrated the leverage available to a
program when the same members of an engineering
team participate throughout all phases of a
development program. Their contributions were
especially noteworthy in solving a control systems
problem for a stabilized weapon platform. In this
problem, the weapon platform was required to rotate so
that, during its excursion, interference with vehicle
hardware components (e.g., antennas, sensors) was
avoided.

 The team's first step in the dynamic analysis process
was to determine the mechanical interferences
between the movement of the platform assembly and
the vehicle. The team then allocated the
implementation of control to software (algorithms) and
hardware (guides, stops, brakes).
 To define software control, the team expanded the
system simulation models to develop a guidance and
control algorithm that met these requirements. After
additional analysis, it was determined that the
algorithm would monitor platform azimuth motion and
command platform motion in elevation to ensure
clearance. The team defined a trade study to examine
three alternatives to determine elevation as a function
of azimuth: (1) elevation provided by resolvers, (2)
elevation provided by resolvers and computed angular
rates, and (3) elevation provided by resolvers and
angular rates provided by rate gyros. The third
alternative identified a new requirement for rate gyros.
 To perform this trade study, the team identified three
parameter requirements to evaluate the design
alternatives. The parameter requirements were
determined by consulting the appropriate specialists
who provided the platform mass properties, the torque
capability provided by the azimuth drive motor and
elevation drive characteristics provided by hydraulics.
Upon receipt of these data, the team tailored the
simulation model by refining the transfer function
gains based on inertial moments and characteristics of
the elevation and azimuth motors. The tailored model
was then executed to verify that the algorithm met the
clearance requirements and determine the required
sampling rate for the algorithm.
 Based on this analysis, the implementation of the
algorithm was allocated to the appropriate hardware
and software component in the weapon system. The
design concept selected provided the algorithm
position data from resolvers and angular rate from rate
gyros. Subsequently, this team implemented and tested
this solution successfully on the weapon system during
integration and test.
 As this case study attests, the effectiveness of a
multi-discipline team developing the software related
products of a system can be significantly increased by
the formation of this team during the system
requirements phase of a program and continuing this
team's effort through the design, integration and test of
these products.

Environment Maturation

 Too few managers are aware that the continuing
dramatic growth in demand for software products has
been accompanied by a commensurate increase in

software technologies. Pressed for time and often
lacking software development experience, most
managers are unaware of the software world's
recurring problems and “frontier” solutions (Cusumano
1991). Significant improvements in software
development productivity, which includes the
requirements development process, will be very
difficult without concurrently maturing the
management environment.
 There are three useful approaches for improving
management understanding of software and
requirement development issues. First is through a
sophisticated customer who is able to ask critical
process development questions and who places
performance criteria into the contract for monitoring
progress in developing the software product. In the
defense industry, government project offices, many
with personnel trained by the Defense System
Management College, are making headway in
compelling contractor management to deal
realistically with software development issues.
 The second, or do it yourself, approach is for the
system/software requirements development team to
make the time to articulate the recurring challenges
software development projects typically experience and
to explain what can be done to mitigate those effects.
Early development and periodic review of informative
 metrics, risk assessment, critical path analysis, and an
easy to understand process all serve to keep
management in touch with the software development
team's accomplishments and problems.
 A third source of pragmatic information available to
those firms with a matrix management structure, is the
expertise resident in functional organizations.
Providing this knowledge to project management can
be done through sponsoring management training
courses, participating in special reviews of the
software product development process, promulgating
procedures for best practices, and informing project
management of significant process improvements
made by other organizations.
 Maturing the management environment requires
steadfast focus on describing practical solutions to real
problems. System engineering practitioners must
consider it their charter to lead the way in developing a
supportive organizational culture.

CONCLUSION

 Improving the system software requirements
development process requires a commitment by all
elements of management to nourish an environment
conducive to multi-discipline team communication,
learning and product development.

 Primary attention is given to devising a process
harnessing and aligning the formidable cognitive skills
of all team members. The vehicle for starting this
activity is provided by system engineering in the form
of a conceptual framework for attacking the system
requirements development problem. System
engineering also provides guidance in working through
the inevitable conflicts. Selection of tools to further
improve team productivity follows process definition.
As requirement development team members grow to
trust one another and engage in a continuing dialogue,
success in the form of quality products delivered within
reasonable schedules will become the norm rather than
the exception.

REFERENCES

Babbitt, Albert E., “The Changing Role of the Systems
Engineer.” Keynote speaker at NCOSE's Third
Annual International Symposium, Arlington,
Virginia, July 26, 1993.

Bridickas, Paula, and Obsenski, Sally M., “Software
Challenges in Mission-Critical DOD Systems.”
General Accounting Office, GAO/IMTEC-93-13,
December, 1992

Brown, P. J., and Cady, K. A., “Functional Analysis
Vs. Object Oriented Analysis: A View From the
Trenches,” Proceedings of the Third Annual
International Symposium, National Council on
Systems Engineering (NCOSE), Arlington,
Virginia, July 26-28, 1993.

Churchman, C. W., Ackoff, R. L., and Arnoff, E. L.,
Introduction to Operations Research, John Wiley
& Sons, New York, 1957.

Cusumano, Michael A., Japan's Software Factories,
Oxford University Press, New York, 1991.

Hogg, Allen, “Developing Software Not So
Mechanical, New Study Says.” Engineering
Times, Volume 15, Number 7, p. 10, July, 1993.

Rechtin, Eberhardt, “Frontiers of Systems
Engineering: Increasingly Smart and Complex
Systems.” Banquet speaker at NCOSE's Third
Annual International Symposium, Arlington,
Virginia, July 26, 1993.

Roetzheim, Williams H., Developing Software to
Government Standards, Prentice Hall, Englewood
Cliffs, New Jersey, 1991.

Senge, Peter M., The Fifth Discipline, Doubleday
Currency, New York, 1990.

Thurow, Lester, Head to Head, Warner Books, New
York, 1993.

Yourdan, Edward, Decline & Fall of the American
Programmer, PTR Prentice Hall, Englewood
Cliffs, New Jersey, 1993.

BIOGRAPHIES

Phillip J. Brown is a Technical Project Manager,
System Engineering, for Loral Vought Systems
Corporation. He has a Bachelor of Civil Engineering
from the Georgia Institute of Technology and a Master
of Science in Industrial and System Engineering from
the Ohio State University. His 27 years of experience
include system engineering work on aircraft, cruise
missiles, direct fire missiles, indirect fire rockets, air
defense missiles, and satellite systems. He is a
registered professional engineer, a member of the
National Society of Professional Engineers and a
member of NCOSE.

Alexander E. Iwach is a Senior Engineering Specialist,
System Engineering, for Loral Vought Systems
Corporation. He has a Bachelor of Science in
Electrical Engineering from the University of
California, Los Angeles. His 14 years of engineering
experience in DOD programs for missile, aircraft,
satellite, shipboard and submarine applications
includes design engineering, integration and test, and
system requirements analysis. He is leading a
system/software requirements development team and
has three years experience in resolving multi-discipline
technical issues during the development and evaluation
of system software requirements.

Donald R. Williams is manager of the Requirements
Definition group for Loral Vought Systems
Corporation. He has been developing system and
software requirements for five years on two major
weapon systems and has been in the aerospace business
for twenty-three years. He is leading the System
Engineering effort to implement improvements to the
requirements development process and to acquire
computer-aided system engineering tools for tracing
requirements, developing functional analysis diagrams,
and performing system analyses.

